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Abstract—Uncertainty from renewable energy and loads is
one of the major challenges for stable grid operation. Various
approaches have been explored to remedy these uncertainties.
In this paper, we design centralized or decentralized state-
feedback controllers for generators while considering worst-case
uncertainty. Specifically, this paper introduces the notion of
L∞ robust control and stability for uncertain power networks.
Uncertain and nonlinear differential algebraic equation model
of the network is presented. The model includes unknown
disturbances from renewables and loads. Given an operating
point, the linearized state-space presentation is given. Then, the
notion of L∞ robust control and stability is discussed, resulting
in a nonconvex optimization routine that yields a state feedback
gain mitigating the impact of disturbances. The developed routine
includes explicit input-bound constraints on generators’ inputs
and a measure of the worst-case disturbance. The feedback con-
trol architecture can be centralized, distributed, or decentralized.
Algorithms based on successive convex approximations are then
given to address the nonconvexity. Case studies are presented
showcasing the performance of the L∞ controllers in comparison
with automatic generation control and H∞ control methods.

Index Terms—Robust Control, Power Networks, Bilinear Ma-
trix Inequalities, Renewable Energy, Load and Generation Un-
certainty, Decentralized Control, Convex Approximations.

I. INTRODUCTION, LITERATURE REVIEW, PAPER
CONTRIBUTIONS AND ORGANIZATION

Wide area measurement systems, phasor measurement units
and advanced communication technologies provide the needed
assets to transform traditional power grids from hierarchical,
unobservable systems to integrated, resilient ones. Specifically,
advances in smart grids present major solutions to power
grids’ major challenges: robustness against uncertainty from
intermittent renewable energy generation and loads.

A plethora of research studies explore solutions to the
aforementioned challenge. These solutions can be organized
into four categories. The first category explores data mining
and estimation methods to better predict wind speeds, solar
irradiance, and loads [1]. This allows for improved planning,
operation, and real-time control. Unfortunately, deviation in
wind speed and solar irradiance is still significant, in compar-
ison with models that predict demand. The second category
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studies the design of grid operating points for generators with
lower operational costs and desirable stability properties [2],
[3]. The third category pertains to the design of economic
incentives and demand-response methods that drive users
to consume less energy, thereby impacting the overall grid
generation and the stability of the grid [4]. The fourth category
of research investigates the design of robust, real-time cen-
tralized/decentralized controllers for traditional generators or
distributed energy resources ensuring that the grid is operating
within its limits. These methods have been applied for different
power system applications and contexts. This paper focuses on
the fourth category of methods. We briefly review the most
relevant literature, while acknowledging that the review given
next is by no means exhaustive.

A linear matrix inequality (LMI)-based criterion to assess
small-signal voltage stability in the presence of uncertain time
constants of dynamic loads is given in [5]. Construction of
LMI-based energy functions via convex approximations in [6]
provide guarantees convergence of post-fault dynamics to sta-
ble equilibrium points. These works suggest remedial control
actions but do not design controllers. Governor-based robust
decentralized controller designs using LMIs have been initially
pursued for transient-stability in [7], later extended to primary
frequency control in [8], and recently developed for wide-area
control (WAC) in [9]. In addition to decentralization, the major
strengths of these works is that they avoid linearization around
operating points. However, to derive controllers, networks
with only generators (by considering model reduction) are
considered and bounds on system nonlinearities are assumed—
bounds that tend to be conservative [8].

The linear quadratic regulator (LQR), and more generally,
H2 robust controllers for power systems have also been
extensively researched. LQR was initially used for secondary
frequency control [10]. More recently, H2 controllers have
found application in wide-area feedback controllers that are
used in conjunction with power system stabilizers. An efficient
solution method for structured H2 problems from [11] is
employed to obtain optimal controllers that feed back a limited
set of measurements to generator automatic voltage regula-
tors [12]. Sparsity-constrained LQR control for WAC is also
considered in [13], in which a decentralized solution algorithm
is computed by casting the problem as non-cooperative game.

The property that weighted l1 minimization yields sparse
solutions [14] has lead to the development of novel WAC
methods. For instance, the ADMM solution of l1 augmented
problems initially proposed in [15] has been applied for
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WAC via voltage regulators in [16], which requires slack-
bus reference angle measurements, and in [17] that bypasses
the aforementioned requirement. Similar WAC methods have
been employed in [18] to control rectifier current and inverter
voltage setpoints of HVDC links. A faster algorithm for the
same l-1 augmented formulation is developed in [19] using a
proximal Netwon method and is applied to WAC.

A decentralized discrete-time LQR controller is designed
in [20] for synchronous generators where terminal voltage
and angle measurements are treated as pseudo-inputs. Using
normal forms and by modeling network loads as constant
impedances, [21] decomposes the nonlinear DAEs of the
power system into equivalent linearized and internal dynamics.
LQR then stabilizes the linearized dynamics while system
internal dynamics are shown to be provably asymptotically
stable irrespectively of operating conditions, further extending
the application of LQR to cover both small-signal and transient
stability.

Moving on from LQR and H2 controllers, H∞ controllers
have also been recently investigated. Sparse l1 regularizedH∞
WAC controller design is obtained in [22] via an optimization
problem with nonlinear matrix inequalities. The work of [23]
presents in an LMI-based decentralized H∞ controller for
synchronous generators and doubly-fed induction generators
that addresses network transient and voltage stability. Central-
ized H∞ controllers robust to load and renewable disturbances
are developed in [24] to aid secondary frequency regulation
in islanded microgrids, albeit simplistic first-order models for
distributed generators are assumed.

The approaches presented in [10], [12], [13], [16], [18]–[24]
do not explicitly consider bounds on the controllable input
of generators. Practical equipment considerations on the other
hand may necessitate bounds on the instantaneous actuation
effort. Also, the variation of constant-power renewables is not
explicitly leveraged. Furthermore, even though constraints on
the feedback gain are considered in previous works [7]–[9], a
network-reduced model of only generator buses is utilized. The
direct impact of constant-power nonsynchronous renewable
generators and loads is abstracted in bounds that tend to
become too conservative.

This paper introduces the notion of L∞ control—originally
proposed in [25] for generic dynamic systems and expanded
in this paper—to power systems with high uncertainty from
renewable energy and loads. This notion of L∞ control is
different than H∞ control. The H∞ norm of a linear system
with transfer function G under disturbances w(t) is the worst-
case, induced energy-to-energy gain of the closed-loop system.
On the other hand, L∞ control is concerned with the L∞ gain
of the system, that is, the gain of the system when viewed as
an operator acting on L∞ inputs and producing L∞ outputs.
With the aforementioned differences in mind, L∞-stability
is a concept that we introduce for power networks in this
paper. Both the L∞ and H∞ control problems yield state
feedback gains that remedy the impact of disturbances. The
paper contributions are as follows.
• From a control-theoretic perspective, the methods presented

in this paper advance the concept of L∞ control to incor-
porate (a) strict control input constraints, (b) an explicit

measure of the worst-case unknown disturbance into the
controller design, (c) formulation of a nonconvex optimiza-
tion routine that seeks to obtain an optimal (or locally
optimal) solution to the main L∞ control problem, in com-
parison with the iterative algorithm in [25] that only yields
a feasible solution, and (d) derivation of successive convex
approximation algorithms—with convergence guarantees—
to solve the nonconvex L∞ problem yielding locally optimal
solutions. All of these contributions are showcased for
centralized feedback control, as well as distributed or purely
decentralized control architectures.

• From a power network perspective, a fairly general dif-
ferential algebraic model of the power grid is considered.
This model encapsulates the algebraic power flow and stator
equations as well as fourth-order generator dynamics with
simplified governor and exciter control inputs. Based on lin-
earization around a known equilibrium, a linear (centralized
and decentralized) state-feedback controller is computed
that ensures a given performance metric is met while the
adverse effects of uncertainty from wind, solar, and load
prediction errors are mitigated. The magnitude of the worst-
case disturbance (which can be given by a system operator
a day ahead) and the grid’s operating point are thus lever-
aged to compute generator control actions. The resulting
controller finds applications in secondary frequency or wide-
area control of power systems.

• The performance of the centralized and decentralized L∞
controllers when applied to the high-order nonlinear grid
model—amidst significant prediction errors from wind and
solar generation—illustrates that the controllers are able to
stabilize the nonlinear power network model. A comparison
of the proposed control algorithm with automatic generation
control (AGC) and H∞ control is also presented.

Section II presents the uncertain power network model. Sec-
tion III develops the worst-case, robust L∞ controller for the
network model, yielding a nonconvex optimization routine for
a centralized architecture with full state feedback. Section IV
explores successive convex approximations for the nonconvex
problem, and Section V develops the L∞ controller for decen-
tralized control architectures. Finally, numerical tests conclude
the paper in Section VI. The paper’s notation is given next.

The symbols Rn and Rp×q denote column vectors with
n elements and real-valued matrices with size p-by-q. The
set of n × n symmetric and positive definite matrices are
denoted by Sn and Sn++. Italicized, boldface upper and lower
case characters represent matrices and column vectors—a is
a scalar, a is a vector, and A is a matrix. Matrix In is a
n × n identity square matrix, while 0 and O represent zero
vectors and matrices of appropriate dimensions. The symbol
‘?’ is used to represent symmetric components in symmetric
block matrices.

II. RENEWABLE-INTEGRATED DAE NETWORK MODEL

We consider a power network with N buses, modeled by a
graph (N , E), where N = {1, . . . , N} is the set of nodes and
E ⊆ N × N is the set of edges; Ni denotes the neighboring
nodes to node i. Define the partition N = G ∪ L where G =
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{1, . . . , G} collects the buses containing G synchronous gen-
erators and L = {1, . . . , L} collects the L buses that contain
load buses only. Further, denote by R ⊆ N the set of buses
containing a total of R renewable energy producers, such as
solar and wind farms. Denote by ai(t) the vector of algebraic
variables for all nodes i ∈ N . For load nodes i ∈ L, there are
two algebraic variables, that is, ai(t) = {vi(t), θi(t)}, where
vi(t) and θi(t) denote the terminal load voltage and phase
angle. For generator nodes i ∈ G, there are four algebraic
variables, that is, ai(t) = {pgi(t), qgi(t), vi(t), θi(t)}, where
pgi(t), qgi(t), vi(t), and θi(t) respectively denote generator
real and reactive power, terminal voltage and phase angle.
Italicized, boldface upper and lower case characters represent
matrices and column vectors—a is a scalar, a is a vector, and
A is a matrix. Matrix I is the identity square matrix, 0 and O
represent zero vectors and matrices of appropriate dimensions.

A. Synchronous Generator Model

We leverage the fourth order dynamics of synchronous
generators with internal algebraic variables. The dynamics of
synchronous generator i ∈ G can be written as [26]:

δ̇i = ωi − ωs (1a)

ω̇i =
1

Mi
[mi −Di(ωi − ωs)− pgi ] (1b)

ėi =
1

τi

[
−xdi
x′di

ei +
xdi − x′di
x
′
di

vi cos(δi − θi) + fi

]
(1c)

ṁi =
1

TChi

[
ri −mi −

1

Ri
(ωi − ωs)

]
, (1d)

where δi := δi(t), ωi := ωi(t), ei := ei(t), mi := mi(t),
ri := ri(t), fi := fi(t) denote the generator rotor angle, rotor
speed, internal electromotive force, mechanical input power,
governor reference signal, and internal field voltage. Mi is the
rotor’s inertia constant (pu×s2), Di is the damping coefficient
(pu × s), τdi is the direct-axis open-circuit time constant (s),
xdi is the direct- axis synchronous reactance, x′di is the direct-
axis transient reactance (pu), TChi

and TCi
are the chest

valve and reference valve time constants (s), R defines the
regulation constant of the speed-governing mechanism, and ωs
denotes the synchronous speed of rotor. In this work, we do
not consider frequency-sensitive loads. If frequency-sensitive
loads are placed on generator buses, their dynamics can be
included in (1b) by adjusting the coefficient Di.

Each synchronous generator has a total of four states,
defined by xsi(t) = [δi ωi ei mi]

>, two control inputs,
defined by usi(t) = [ri fi]

>, and four algebraic variables
asi(t) = [pgi qgi vi θi ]>. The following algebraic equations
relate the generator real and reactive power output with
generator voltage, internal EMF, and internal angle, and must
hold at any time instant for generator nodes i ∈ G [26]:

pgi =
eivi
x′di

sin(δi − θi) +
x′di − xqi
2x′dixqi

v2i sin[2(δi − θi)] (2a)

qgi =
eivi
x′di

cos(δi − θi)−
x
′

di + xqi
2x
′
dixqi

v2i

+
x
′

di − xqi
2x
′
dixqi

v2i cos[2(δi − θi)].
(2b)

In this paper, we focus on the small-signal stability of un-
certain power systems. By linearizing (1) and (2) around
the operating point {x0

si ,u
0
si ,a

0
si}, we obtain the following

dynamics of the small-signal system, with ∆xs := x(t)−x0

∆ẋsi = Asi∆xsi +Bsi∆usi +Dsi∆asi (3)

where Asi ,Bsi ,Dsi are the Jacobian matrices corresponding
to the linearization of the dynamics of synchronous generator
i around the operating point {x0

si ,u
0
si ,a

0
si}. Similarly, (2) can

be linearized around {x0
si ,u

0
si ,a

0
si} as follows

0 = Hsxi
∆xsi +Hsai

∆asi . (4)

The above dynamics (3) and (4) correspond to a single
synchronous generator. Let ∆x = [∆x>s1 . . . ∆x>sG ]>,
∆u = [∆u>s1 . . . ∆u>sG ]>, ∆a = [∆a>s1 . . . ∆a>sG ]>

define the states, control inputs, and algebraic variables for
the G synchronous generators in the power network. Given
that, we obtain

∆ẋ = As∆x+Bs∆u+Ba∆a (5a)
0 = Hsx∆x+Hsa∆a, (5b)

where As ∈ R4G×4G, Bs ∈ R4G×2G, Ds ∈ R4G×4G,
Hsx ∈ R2G×4G. For brevity, we do not provide the closed
form presentation of these matrices.

B. Generation from Utility-Scale Solar and Wind Farms

Since the objective of this work is to obtain worst-case dis-
turbance rejection controllers for the synchronous generators,
we consider that predicted values of electric power generation
from wind and solar buses i ∈ R are provided—similar to the
widely available load forecasts. Unlike traditional demand that
can be predicted in hour-ahead markets within an accuracy
of 1–5% (see California ISO’s daily hour-ahead prediction
and actual demand [27]), high-fidelity estimates of generation
from wind and solar farms are difficult to obtain in day-
ahead or hour-ahead fashion. Hence, we consider that real-time
disturbances from pri(t) for buses i ∈ R that are unknown for
the controller design. Section VI includes concrete discussion
on the choice of these unknown disturbances, as well as case
studies demonstrating the performance of the L∞ controller
amidst large, unpredictable variations in generation from re-
newables.

C. Power Flow Equations and DAE Model with Uncertainty

For bus i ∈ G ∩R, the power flow equations of the power
network can be written as

pri − pli = − pgi +Giiv
2
i +

N∑
j=1

(Gijvivj cos(θij)

+Bijvivj sin(θij)),

(6a)

qri − qli = − qgi −Biiv2i +

N∑
j=1

(Gijvivj sin(θij)

−Bijvivj cos(θij)),

(6b)
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and for a bus i ∈ L ∩R, the power flow equations are

pri − pli = Giiv
2
i +

N∑
j=1

(Gijvivj cos(θij)

+Bijvivj sin(θij)),

(7a)

qri − qli = −Biiv2i +

N∑
j=1

(Gijvivj sin(θij)

−Bijvivj cos(θij)),

(7b)

where θij = θi − θj , pli = pli(t), qli = qli(t), are the real
and reactive power loads at bus i modeled as time varying
power load, and pri = pri(t), qri = qri(t) are the active and
reactive power generated from the renewable energy sources
at node i. Linearizing the power flow equation (6) and (7) of
all buses, we obtain the following relationship between the
voltages, phase angles, active and reactive power

[
∆pr −∆pl
∆qr −∆ql

]
=


−IG O DG1 DG2

O −IG DG3
DG4

O O DL1
DL2

O O DL3
DL4


︸ ︷︷ ︸

Ψ


∆pg
∆qg
∆v
∆θ

 , (8)

where Ψ ∈ R(2G+2L)×(4G+2L) is obtained by differentiating
equations (6) and (7) and obtaining the power flow Jacobian
around the operating point of the power network. Specifically,
Ψ can be analytically obtained in terms of the power network
parameters, but for brevity, we do not include the exact
structure of Ψ as this would require lengthy listing of the
closed form partial derivatives. We now define the state,
controllable inputs, unknown inputs, disturbances, and alge-
braic variables of the uncertain power network. Combining the
linearized power flow (8) with the internal algebraic equations
of the synchronous generators (5b) as well as their associated
dynamics (5a), we obtain the following DAEs that model the
dynamics of the uncertain network

∆ẋ(t) = As∆x(t) +Bs∆u(t) +Ba∆a(t) (9a)
∆w(t) = Hx∆x(t) +Hu∆u(t) +Ha∆a(t), (9b)

where ∆w =
[
(∆p>r −∆p>l ) (∆q>r −∆q>l )

]> ∈ R2G+2L

includes load and renewable energy deviations from the pre-
dicted values; matrices Hx,Hu, and Ha are all matrices of
appropriate dimensions that include the linearization of the
power network dynamics.

Assumption 1. Matrix Ha is invertible. This assumption
is mild as it holds for practical networks and for various
operating points; see [2] and references therein.

Assuming the invertibility of Ha, we can write

∆a(t) = H−1a (∆w(t)−Hx∆x(t)−Hu∆u(t)) .

The DAEs in (9) can then be written as

∆ẋ(t) = A∆x(t) +Bu∆u(t) +Bw∆w(t), (10)

whereA = As−BaH
−1
a Hx,Bu = Bs−BaH

−1
a Hu,Bw =

BaH
−1
a In the next section, we discuss a robust con-

trol formulation that considers the worst case unknown in-

puts/disturbances ∆w(t) (from the uncertainty due to mis-
match/deviation in load predictions and renewable energy
generation) to obtain a state-feedback controller that drives
the system to a neighborhood of the operating point.

III. ROBUST FEEDBACK CONTROL OF UNCERTAIN POWER
NETWORKS

Here, we present the L∞ control formulation for the un-
certain dynamics of the power network (10). The objective of
this formulation is to obtain a control law for the inputs of the
synchronous generators prefi and fi, given the aforementioned
disturbances.

A. Assumptions, Definitions, and Preliminaries

For the ease of exposition, we define nx = 4G, nu = 2G,
and nw = 4G+ 2L. In summary, the uncertain system in (10)
has nx states, nu controllable inputs, and nw unknown inputs.
We also drop the ∆ from the states, inputs, and disturbances,
that is ∆x(t) ≡ x(t). We now present the following needed
assumptions and definitions.

Definition 1. The L∞ space is defined as the set of signals
which have bounded amplitude, that is

L∞ = {w : R+ → Rnw | supt≥0 ‖w(t)‖2 <∞},

and the L∞-norm of a signal w ∈ L∞, denoted as ‖w‖L∞ ,
is given by ‖w‖L∞ = sup

t≥0
‖w(t)‖2 and ‖w‖2 is the 2-norm

of w.

This norm defines the worst-case value that the signal can
take for t ≥ 0. This implies that ‖w‖L∞ ≥ ‖w(t)‖2.

Assumption 2. The disturbance vector w(t) belongs to the
L∞ space, and is considered to be completely unknown.

Design Requirement 1. A budget requirement ||u(t)||2 ≤
umax on the input u(t) is given.

Let z(t) = Cx(t) +Du(t) define the performance output
of the control law of the power network which can include
the deviations in the frequencies of the buses, as well as any
other state of the synchronous generators. The performance
index can also include the magnitude of the control actions
which are essentially the deviations from the setpoints.

Remark 1. Individual performance indices zi(t) can be de-
fined separately, as one performance index might focus only on
the magnitude of the control action and another performance
index can quantify frequency deviation of the most important
bus in the network. In addition, and similar to the vintage
LQR cost function x>Qx+u>Ru, matrices C and D can be
obtained from Q and R through the operator’s preference of
penalizing frequency and rotor angle deviations or penalizing
higher magnitude of generators’ control actions. Examples are
given in Section VI.

Assumption 2 and Requirement 1 are practical, as the load
disturbances and deviations in the wind speed and solar irradi-
ance are naturally unknown inputs with bounded amplitudes,
and the input budget for all the controls cannot exceed a certain
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predetermined limit. Next, we rewrite the dynamics augmented
by the performance index

ẋ(t) = Ax(t) +Buu(t) +Bww(t) (11a)
z(t) = Cx(t) +Du(t). (11b)

The objective of this section is to derive a control law u(t) =
Kx(t) that minimizes the impact of the unknown inputs w(t)
on the performance index z(t), while guaranteeing that the
controller drives the system states to a neighborhood of the
operating point. Given the feedback control law, the closed
loop dynamics can be written as

ẋ(t) = f(x,w) = (A+BuK)x(t) +Bww(t) (12)
z(t) = h(x) = (C +DK)x(t). (13)

The next definition from [25] presents the properties of a
special kind of robust dynamic stability, namely the L∞
stability with performance level µ.

Definition 2. The closed-loop system with unknown in-
puts (12) is L∞-stable with performance level µ if the fol-
lowing conditions are satisfied.

1) The closed-loop linear system without unknown inputs
ẋ(t) = f(x,0) is asymptotically stable.

2) For any unknown input w(t) 6= 0 and zero state initial
conditions (x0 = 0), we have ‖z(t)‖2 ≤ µ‖w‖L∞ .

3) For any nonzero initial conditions and unknown input,
there exists a function β : Rnx × R+ → R+, such that

‖z(t)‖2 ≤ β (x0, ‖w‖L∞) , lim
t→∞

sup ‖z(t)‖2 ≤ µ‖w‖L∞ .

B. L∞ Controller Design with Input Bound Constraints

The following theorem presents the design of the L∞ state-
feedback controller that aims to minimize the impact of the
unknown disturbances on the state-performance.

Theorem 1. For the system defined in (11), consider that the
initial state value is x0. Then, if there exist matrices S =
S> � 0 and Z and positive scalars {α, µ0, µ1, µ2} that are
the solution to the nonconvex optimization problem

f∗ = min µ0µ1 + µ2 (14a)

s.t.

 SA> +AS
+Z>B>u +BuZ + αS Bw

? −αµ0I

 � 0 (14b)

−µ1S O SC> +Z>D>

? −µ2I O
? ? −I

 � 0 (14c)

[
−µ0ρ

2 x0

? −S

]
� 0 (14d)[

−u
2
max

ρ2 S µ0Z

? −µ0I

]
� 0, (14e)

then the feedback controller u(t) = Kx(t) with K = ZS−1

guarantees that

‖z(t)‖2 ≤ µρ, µ =
√
µ0µ1 + µ2,

where ρ = ‖w‖L∞ , and that the closed loop system with
unknown inputs (12) is L∞-stable with performance level µ.
Furthermore, Design Requirement 1 is satisfied.

The result in Theorem 1 guarantees that the small-signal
deviation in the performance index, that is ||z(t)||2, does
not exceed the worst-case scenario of load and wind speed
deviations from the setpoints (defined as µ||w||L∞), while
satisfying the bound constraints on the control inputs. Specif-
ically, this feedback L∞ controller guarantees that z(t) is in
a tube of radius

√
µ||w||L∞ =

√
µρ of the operating point

of the power network where (i) µ is comprised of scalar
optimization variables in (14) and (ii) ρ is a user-specified
constant modeling worst-case uncertainty that contributes to
the controller synthesis through the third and fourth matrix
inequality in (14). In addition and in comparison with the
results in [25] which develop the L∞ for general dynamic
systems, Theorem 1 includes (i) the input bound constraints,
(ii) the explicit measure of the worst-case unknown input ρ,
and (iii) a nonconvex optimization routine that seeks to obtain
an optimal (or locally optimal) solution to (14). In comparison,
the iterative algorithm in [25] only seeks a feasible solution.

Remark 2. The L∞ controller from Theorem 1 is robust to any
bounded disturbance w(t) defined earlier, granted a solution
to (14) exists. With that in mind, the controller is not robust
to changes in state-space matrices generated for various
operating points. Robustness to changes in the operating point
can be included through considering a polytopic version of
the linearized dynamics and state-space matrices modeling
various operating points.

The next section is dedicated to solving the nonconvex
problem (14) using convex optimization techniques.

IV. SUCCESSIVE CONVEX APPROXIMATIONS FOR (14)
The nonconvex optimization problem (14) includes bilinear

matrix inequalities (BMI) due to the presence of the terms αS,
αµ0I , and µ1S in the first two constraints. It is very common
in the robust control literature to introduce an alternating
minimization-based algorithm to solve robust control prob-
lems with similar structure to (14); see [25]. However, these
approaches do not typically provide optimality guarantees. In
this section, we present a simple approach to solve (14) with
convergence guarantees. The approach is based on expanding
the BMIs as a difference of two convex functions that are then
approximated by linear matrix inequalities (LMI).

To approximate BMIs with LMIs, we adopt the successive
convex approximation (SCA) method that is introduced in
[28]. This method principally replaces BMIs with a difference
of convex functions, which can subsequently be transformed
into LMIs using the first-order Taylor approximation and the
Schur complement. If the optimal value of the optimization
problem (14) is denoted by f∗, then the approximating convex
problem has optimal value f̄∗ such that f∗ ≤ f̄∗. The next
theorem presents the result from applying the SCA to (14) and
hence yielding a sequence of convex routines to solve.

Theorem 2. The convex approximation of problem (14)
around the point (α̃, µ̃0, µ̃1, S̃) can be written as an
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SDP with optimization variables S,Z and positive scalars
µ0, µ1, µ2, α, }

min } (15a)

s.t. Ct(S,Z, α, µ0, µ1, µ2, }; S̃, α̃, µ̃0, µ̃1) � 0 (15b)

where Ct(·) is a block diagonal concatenation of the LMI
constraints defined in Appendix C.

Proof of Theorem 2 is in Appendix C alongside the closed
form representation of Ct(·). As stated earlier, this method
relies on the SCA of the nonconvex constraints around a lin-
earization point. Let k be the index of a problem that is solved
in every iteration; and let αk, µ0k , µ1k , µ2k , }k, Sk, Zk be
the corresponding solution. An additional term Jk in the
objective function of (15) is added to improve convergence.
This term can be written as

Jk = ‖α− α̃‖22 + ‖µ0 − µ̃0‖22 + ‖µ1 − µ̃1‖22 + ‖S − S̃‖2F

where α̃ = αk−1, µ̃0 = µ0k−1
, µ̃1 = µ1k−1

, S̃ = Sk−1. The
k-th SCA of (14) can be written as

f̄∗k = minimize }k + γJk (16)
subject to Ct(S,Z, α, µ0 , µ1 , µ2 , }; S̃, α̃, µ̃0, µ̃1) � 0

where α, µ0, µ1, µ2, }, S, and Z are the new optimization
variables; γ > 0 is a regularization weight; and f̄∗k is the
optimal value of (16) at the k-th SCA iteration. Algorithm 1
provides the steps to solve (16) sequentially until a maximum
number of iterations (MaxIter) or a stopping criterion defined
by a tolerance (tol) is achieved.

Based on the general framework of [28], Algorithm 1 enjoys
several convergence properties. In particular, the sequence
{f̄∗k} is monotonically decreasing; and by construction, it is
an upper bound to f∗ [cf. (14)]. Furthermore, under mild
regularity conditions listed in [28], every accumulation point
of the sequence of solutions {αk, µ0k , µ1k , µ2k , }k, Sk, Zk}
to (16) is a KKT point of (14).

Remark 3. Since the SCA is an inner approximation of the
nonconvex problem, it needs to start from a strictly feasible
point. To obtain this point, α and µ1 can always be set to a
desired predefined values and then solve problem (14) as an
SDP with LMI constraints.

After the implementation of Algorithm 1, the state-feedback
control is computed as u = K∗x(t) where K∗ = Z∗(S∗)−1.
Per Theorem 1, this gain guarantees that

‖z(t)‖2 = ‖Cx(t) +Du(t)‖2 ≤ µ∗ρ

for all t > t0, where µ∗ =
√
µ∗0µ

∗
1 + µ∗2 and ρ = ‖w‖L∞

which can be considered as the worst-case disturbance. Sec-
tion VI explores whether these performance guarantees hold
under various conditions.

V. DECENTRALIZED L∞ CONTROL FORMULATION

The formulation presented in the previous section assumes
a centralized control law, that is, matrix K is dense, which
is practical in microgrids or in areas where utilities or system

Algorithm 1 Solving the SCA of (14).
initialize: k = 1, αk−1, µ0k−1

, µ1k−1
, and Sk−1

while k < MaxIter do
Solve (16)
if |f̄∗k − f̄∗k−1| < tol then

break
else
k ← k + 1

end if
end while
{S?,Z?} ← {Sk,Zk}, K? ← Z?(S?)−1

operators have full access to the network’s states. This assump-
tion is reasonable in future power networks with increased
installations of PMUs and dynamic state estimation methods.
In this section, we present a decentralized controller that
ensures that each local controller only uses locally acquired
measurements. Specifically, the two local control signals for
each generator only require the knowledge of generator’s
states. The design can also be extended to multi-area power
networks with each area having the measurements from all the
buses in that area.

Following a similar derivation of Theorem 1 for the cen-
tralized L∞ controller, the robust L∞ decentralized control
problem can be derived considering that K is an optimization
variable instead of computing it from the resulting matrices
Z and S. This is then followed by imposing strict structure
on K that defines the decentralized control architecture—be it
purely decentralized or distributed. In particular, in the proof
of Theorem 1 we do not apply the congruence transformation
and the change of variables before (23), but keep K as an
optimization variable. The resulting formulation is

min µ0µ1 + µ2 (17a)

s.t.

 (A> +K>B>u )P
+P (A+BuK) + αP PBw

? −αµ0I

 � 0 (17b)

−µ1P O C +DK
? −µ2I O
? ? −I

 � 0 (17c)

[
−µ0ρ

2 Px0

? −P

]
� 0,

[
−u

2
max

ρ2 P µ0K

? −µ0I

]
� 0 (17d)

K ∈ K, (17e)

where the optimization variables are P , K and the positive
scalars. The constraint K ∈ K defines the convex set that
describes the decentralized control architecture. For example,
if purely decentralized controllers are sought, then Kij = 0
can be included in K for all (i, j) except for the ones
representing feedback of local measurements to local controler
inputs. Remark 4 includes a discussion on this constraint.

Similar to the SCA and derivations in the previous section,
problem (17) can be solved using a specific successive convex
approximation, which is detailed in the next theorem. We do
not consider the input bound constraints as a part of the SCA
for the decentralized L∞ due to the lack of space.
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Theorem 3. The convex approximation of problem (17)
around the point (α̃, µ̃0, µ̃1, P̃ , K̃) can be written as the
following SDP with optimization variables P ,K and positive
scalars µ0, µ1, µ2, α, }:

min } (18a)

s.t.


Ξ ? ? ? ?

B>wP
1
4Fl2(·) ? ? ?

1
2 (αI + P ) O −I ? ?

O 1
2 (α− µ0)I O −I ?

1√
2
(P +BuK) O O O −I

 � 0

(18b)
1
4Hl(·) ? ? ?
O −µ2I ? ?

C +DK O −I ?
1
2 (µ1I − P ) O O −I

 � 0 (18c)

[
1
4Hl(·) + µ2 − } ?

1
2 (µ0 + µ1) −1

]
� 0, K ∈ K, (18d)

where Ξ = A>P + PA + 1
2Gl(·) + 1

4Fl1(·) and
Fl1 , Fl2 , Gl, Hl are all linear matrix-valued functions of the
optimization variables given in Appendix D.

The proof of Theorem 3 and the closed form expressions
of the linear matrix-valued functions are all presented in
Appendix D. An SCA algorithm akin to Algorithm 1 can
also be implemented to obtain K∗, µ∗0, µ

∗
1, and µ∗2 yielding

the desired L∞ performance level µ∗ =
√
µ∗0µ

∗
1 + µ∗2 for the

decentralized control architecture. Note that the nonconvexity
in (17) is different from that of (14) as the bilinearities
only appear as multiplications between scalar variables or
between scalar and matrix variables. For the decentralized L∞
formulation, one of the bilinearities appears as a multiplication
of two matrix variables P and K, where K ∈ K. This type
of bilinearity makes it challenging to obtain a strictly feasible
point of problem (17), which is needed as an initialization. To
that end, we develop an algorithm to initialize the SCA for
(17) based on the methods in [28, Section V].

Remark 4. The convex constraint K ∈ K can be arbitrarily
chosen by the system operator, as it depends on the logistics of
the controller. If a purely decentralized controller is desired,
then the i-th controller only measures its generator states.

VI. NUMERICAL EXPERIMENTS

In this section, numerical simulations are presented to
investigate the application of the aforementioned algorithms
in stabilizing several standard IEEE test networks under
load and renewable disturbances. The SDPs are modeled via
YALMIP [29] and solved by MOSEK [30]. The operating
point of the power network (x0,u0,a0) is obtained given
w0 using optimal power flow. The linearized state-space
parameters are then computed. Next, the L∞ feedback gain K
is calculated via Algorithm 1 and Theorem 2. The feedback
controller u(t) = Kx(t) is applied to the nonlinear power
network given in (1), (2), (6), and (7). The nonlinear DAEs
are simulated via MATLAB’s ODE suite. The objective of
this section is two-fold: Comparing the performance of the
L∞ controller with other control methods in the literature of

power networks under various conditions, and investigating
whether the performance bounds from Theorem 1 hold.

A. Power System Parameters and Setup

The 9-bus system, 39-bus New England system, and a 57-
bus system are selected to conduct the numerical simula-
tions. The steady-state data required to construct the power
flow equations in (6) are obtained from MATPOWER [31].
Synchronous machine constants for characterizing generator
dynamics based on the fourth-order model in (1) are ob-
tained from Power System Toolbox case files d3m9bm.m,
datane.m for the 39-bus network [32]. For the 57-bus
network, as well as the governor model of (1d) for all
networks, typical parameter values of Mi = 0.2 pu × sec2,
Di = 0 pu × sec, τdi = 5 sec, xdi = 0.7 pu, xqi = 0.5 pu,
x′di = 0.07 pu, τci = 0.2 sec, and Ri = 0.02 Hz

pu have been
selected based on ranges of values provided in PST. For later
reference, the power base is 100 MVA. The total initial load,
that is

∑
n∈N p

0
ln

, is 3.15 + j1.15 pu, 62.54 + j13.87 pu,
and 12.51 + j3.36 pu for the 9-, 39-, and 57-bus networks,
respectively. When wind farms are added to the standard test
cases, we set R = G ∪ L so that R = N . Wind injection is
modeled as negative loads, effectively injecting power into the
network albeit reducing system inertia.

B. Robust L∞ vs. Automatic Generation Control

Here, we evaluate the performance of the proposed L∞ con-
troller on the 39-bus network for the centralized architecture
of feedback control and compare it with automatic generation
control (AGC) under two settings: (a) a step disturbance in
load but without wind generation and (b) a step disturbance in
load with wind generation. The performance index is selected
by setting Cδ,ω,e = 0.2I , Cm = 0.1I , Dr = 0.1I , and
Df = 0.2I . Appendix B includes the AGC implementation.

The system initially operates with total load of (p0ln , q
0
ln

) and
zero wind capacity. For t > 0, a sudden step-change occurs in
the load. In particular, the value of pln(t) varies as follows:

pln(t) = p0ln + ∆pln , n ∈ N (19)

where we set ∆pln = 0.03p0ln as a step change. Step
disturbances in power system frequency control studies is a
common practice [33]. For a time span of t ∈ [0, 10] seconds,
the disturbance in (19) causes the DAEs to depart from the
initial equilibrium. This disturbance corresponds to a signal
w(t) with ‖w‖L∞ = 0.1674 pu. The centralized feedback law
previously computed is then applied to the nonlinear, perturbed
power network. The behavior of the nonlinear dynamical
system is then analyzed. The frequency response in this setup
is given in Fig. 1 for both the robust L∞ controller and AGC;
the figure shows the ranges of frequencies for all buses.

In our implementation of the AGC, the governor is con-
trolled according to (32b) in Appendix B while the exciter uses
the optimal L∞ feedback signal to aid voltage control. In an
additional setup, wind farms are made responsible for 0.2p0ln
of generation. The same disturbance (19) is applied again and
dynamical results are recorded. The frequency response in
this case is depicted in Fig. 2. Maximum frequency deviation
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Fig. 1. Frequency performance under a load step disturbance in a power
network without wind generation: (a) L∞ controller and (b) AGC. Both
controllers manage to control the frequency around the nominal value.
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Fig. 2. Frequency performance under a load step disturbance in a power
network with wind generation for the L∞ controller. It is evident that the L∞
controller manages to control the frequency around the nominal value. AGC
fails to produce stable frequency oscillations under heavy wind disturbance.

for both setups are also printed in Table I for L∞ and AGC
control methods. It is observed that when the low-inertia wind
generators are included, AGC fails in frequency control under
a step-change in load and significant wind generation—and
the corresponding frequency plots diverge—whereas L∞ is
successful in stabilizing the grid’s frequency.

C. Robust L∞ vs. H∞ control

In this section, we compare the L∞ with the robust H∞
controller implemented via the LMI formulation given in [34]
and later used in power networks. This implementation is
shown in Appendix B. Similar to the second setup in the
previous section, wind farms are made responsible for 0.2p0ln
of generation. In this setup, the step disturbance in load
model (19) is further varied to incorporate random load and
wind variations together, as follows:

pln(t) = p0ln + ∆pln + zln(t), n ∈ N (20a)

prn(t) = p0rn + zrn(t), n ∈ R (20b)

where quantities zln(t) and zrn(t) are Gaussian noise with
zero mean and variance of 0.33∆pln and large wind variance
of 0.05p0rn (see also [35, Section IV.D] for similar levels of
wind variations). The simulations are repeated for 50 such
random realizations. The range of wind variation is shown in
Fig. 3. Results from trajectories are recorded in Table II. We
find that both methods have a satisfactory frequency control
performance while the L∞ control method outperforms the
H∞ in voltage control performance. Notice that frequency
and voltage deviations are maximum deviations measured
with respect to the initial point x0 and across all 50 wind
realizations. Ranges and averages of frequency/voltage plots
for all realizations for all buses are provided in Fig. 4.

TABLE I
MAXIMUM FREQUENCY DEVIATION COMPARISON BETWEEN L∞

AND AGC CONTROLLERS FOR THE 39-BUS NETWORK.

Controller Freq. Dev. (No wind) Freq. Dev (Wind)
L∞ 0.0265 (Hz) 0.0261 (Hz)
AGC 0.0221 (Hz) 0.4764 (Hz)

TABLE II
PERFORMANCE EVALUATION OF L∞ , AND H∞ CONTROLLERS

FOR THE 39-BUS NETWORK.

Controller Max. Freq. Dev. Max. Volt. Dev.
L∞ 0.0415 (Hz) 0.0472 (pu)
H∞ 0.0441 (Hz) 0.1147 (pu)

D. Decentralized and Input-Constrained L∞ Control

In this section, we evaluate the performance of the de-
centralized and input-constrained designs in comparison to
the centralized controller in stabilizing the 9-, 39-, and 57-
bus networks (in the previous section, input constraints are
not imposed). For the input-constrained problem, we select
umax = 5 (pu). For the decentralized controller, K is selected
so that only local measurements are used to compute the
local input feedback, effectively enforcing a block-diagonal
feedback structure on the control gain K.

The disturbances applied are of the form (20) with L∞-
norms of ‖w‖L∞ = 0.0861 (pu), ‖w‖L∞ = 0.7413 (pu),
and ‖w‖L∞ = 0.2564 (pu) respectively for the 9-, 39-, and
57-bus networks. The convergence of the SCA to compute
a centralized K on the 57-bus network is demonstrated in
Fig. 5 as an example. Similar convergence plots for the
decentralized or input-constrained controllers are obtained. In
Fig. 5, the value of ~ represents the optimal objective value of
problem (15) per iteration. The quantity µ2 is the expression
µ0µ1 + µ2 obtained from the optimal values of variables µ0,
µ1, and µ2 in problem (15) per iteration.

Table III summarizes the performance of the centralized,
input-constrained, and decentralized controllers when com-
puted by MaxIter = 50 iterations of their respective SCA
Algorithm 1. For instance, notice the squared root of the
value at the last iteration in Fig. 5 equals 1.1621 which
is listed in Column 3 of Table III corresponding to the
centralized controller for the 57-bus system. The trend is
that the centralized and the input-constrained achieve similar
performances. The decentralized L∞ control also performs
well in terms of curbing frequency and voltage deviations.
On the other hand, the decentralized controller shows poorer
performance in controlling the voltage of the 39-bus system.
In this case, only local state deviations are used to compute
the feedback gain.

Finally, we further bring to attention Columns 3 and 4
from Table III where it always holds that µ ≤ ‖∆z‖L∞

‖∆w‖L∞
.

To emphasize this result, corresponding plots for the 39-bus
and 57-bus networks for the centralized controller are also
provided in Fig. 6. In short, the results shown in Fig. 6
and Table III corroborate the findings of Theorem 1 that the
performance bound for the L∞ controller will be satisfied for
the power network under various control architectures (central-
ized, decentralized, and input-constrained). This illustrates that
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Fig. 3. Range of wind variations around the predicted value of p0w.
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Fig. 4. Range and averages of frequency and voltage plots for 50 wind
realizations and across all buses. Control performance under a load step
disturbance and large wind variation: for L∞ controller (left) and H∞
controller (right).

the result of Theorem 1 is not merely theoretical—it provides
a useful way of bounding the performance of the system in
terms of the worst-case disturbance while not yielding too
conservative results. It can be seen that the performance level
µ||w(t)||L∞ is not significantly larger than ||z(t)||2.

E. L∞ control under large non-zero mean wind disturbances

In this setup, the disturbance model (20) is modified to
include random, large step disturbances in wind generation
as well. The new disturbance model is as follows:

pln(t) = p0ln + ∆pln + zln(t), n ∈ N (21a)

prn(t) = p0rn −∆prn + zrn(t), n ∈ R (21b)

where quantities zln(t) and zrn(t) are similar to (20). How-
ever, the quantity ∆p0rn is included as a step disturbance in
wind generation. Its value is random and allowed to vary
in the interval [0, p0rn ] simulating a sudden loss of wind
generation of up to 100% in seconds. The simulations are
conducted for 50 such random realizations. The frequency
and voltage deviations with respect to the initial point x0 and
across all 50 realizations are recorded. Ranges and averages
of frequency and voltage plots are provided in Fig. 7. The
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1.5

1.52
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Fig. 5. Iterations of the SCA algorithm to compute a centralized stabilizing
K for the 57-bus network.

(a) (b)

Fig. 6. Bound on the performance index for the centralized controller on (a)
the 39-bus network, and (b) the 57-bus network.

results show that even under significant, unpredictable changes
in wind generation, the L∞ still ensures frequency and voltage
stability. We note that AGC and H∞ both failed in producing
bounded state trajectories under large wind disturbances, as
the used DAE solver diverged.

VII. CONCLUDING REMARKS AND FUTURE WORK

The paper considers a new notion of robust feedback
control in power networks, namely the L∞ control which
considers worst-case bounds on uncertainty from renewables
and loads while accounting for input bound constraints and
various control, centralized/decentralized architectures. The
proposed robust controller is applied on the power network
dynamics with nonlinear DAE models under significant load
and renewables uncertainty. The performance of the controller
shows improvement over the status-quo controllers that use
similar information to L∞ control. The paper’s limitations are
two-fold. First, the proposed controller requires the knowledge
of the grid operating point—and is not robust to changes in
the operating points unless these changes are incorporated in
the controller synthesis through the state-space matrices and
Theorem 1. Second, and similar to recent feedback control
methods in the literature, it is still unclear why the linear
controller based on the linearized grid model works well for
the nonlinear DAE grid model. This paper does not provide
answers to the aforementioned limitations.

Future work will focus on the following topics: (i) Deriving
L∞ stability conditions of the nonlinear DAEs and then a
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TABLE III
PERFORMANCE OF THE L∞ CONTROLLER FOR DIFFERENT TEST

CASES, UNDER VARIOUS CONTROL ARCHITECTURES
(CENTRALIZED, INPUT-CONSTRAINED, AND DECENTRALIZED).

Case Type µ
‖∆z‖L∞
‖∆w‖L∞

Freq.
Dev. (Hz)

Volt.
Dev. (pu)

‖∆u‖L∞
(pu)

9-bus
Cen. 0.9573 0.4159 0.0029 0.0130 0.1275
Inp. 0.9445 0.4372 0.0025 0.0092 0.1312
Dec. 9.8712 1.1416 0.0053 0.0186 0.3736

39-bus
Cen. 0.6241 0.3775 0.0183 0.0386 1.10561
Inp. 0.8654 0.3211 0.0175 0.0422 0.9816
Dec. 3.4654 0.8870 0.0310 0.1075 2.8432

57-bus
Cen. 1.1621 0.3293 0.0076 0.0155 0.2988
Inp. 2.5334 0.3087 0.0074 0.0163 0.2762
Dec. 5.2741 1.2271 0.0124 0.0323 1.1601

0 2 4 6 8 10

59.92

59.94

59.96

59.98

60

(a)

0 2 4 6 8 10

0.9

0.95

1

1.05

(b)

Fig. 7. Range and averages of frequency and voltage plots for 50 large wind
and load disturbances and across all buses.

corresponding controller which does not require the knowl-
edge of the grid’s operating point. (ii) Scaling the proposed
controller using SDP solvers that exploit sparsity of the state-
space matrices. (iii) Investigating whether L∞ controller—a
robust control method—yields a cheaper or more expensive
overall power network operational costs, in comparison with
AGC and other control architectures.
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Krogh, N. Popli, and M. D. Ilić, “Wind Integration in Power Systems:
Operational Challenges and Possible Solutions,” Proc. IEEE, vol. 99,
no. 1, pp. 214–232, Jan 2011.

[36] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and
Control, 3rd ed. John Wiley & Sons, 2012.

[37] Z. Wang, F. Liu, J. Z. F. Pang, S. Low, and S. Mei, “Distributed Optimal
Frequency Control Considering a Nonlinear Network-Preserving
Model,” 2017. [Online]. Available: https://arxiv.org/pdf/1709.01543.pdf

https://arxiv.org/pdf/1701.02036.pdf
http://ieeexplore.ieee.org/document/7835692/
http://ieeexplore.ieee.org/document/7835692/
http://arxiv.org/abs/1312.4892
http://www.caiso.com/outlook/SystemStatus.html
https://arxiv.org/pdf/1709.01543.pdf


11

Ahmad F. Taha is an assistant professor with the
Department of Electrical and Computer Engineering
at the University of Texas, San Antonio. He received
the B.E. and Ph.D. degrees in Electrical and Com-
puter Engineering from the American University of
Beirut, Lebanon in 2011 and Purdue University,
West Lafayette, Indiana in 2015. Dr. Taha is inter-
ested in understanding how complex cyber-physical
systems (CPS) operate, behave, and misbehave. His
research focus includes optimization, control, and
security of CPSs with applications to power, water,

and transportation networks. Dr. Taha is an editor of IEEE Transactions on
Smart Grid and the editor of the IEEE Control Systems Society Electronic
Letter (E-Letter).

Mohammadhafez Bazrafshan Mohammadhafez
Bazrafshan received the B.S. degree in Electrical
Engineering from Iran University of Science and
Technology in 2012. He later received his M.S
and PhD degrees in Electrical Engineering from the
University of Texas at San Antonio respectively in
2014 and 2018. His research focuses on optimization
applications in power systems.

Sebastian A. Nugroho was born in Yogyakarta,
Indonesia and received the B.S. and M.S. degrees
in Electrical Engineering from Institut Teknologi
Bandung (ITB), Indonesia in 2012 and 2014. He is
currently a graduate research assistant and pursuing
the Ph.D. degree in Electrical Engineering at the
University of Texas, San Antonio (UTSA), USA. His
main areas of research interest are control theory,
state estimation, and engineering optimization with
applications to cyber-physical systems.

Nikolaos Gatsis received the Diploma degree in
Electrical and Computer Engineering from the Uni-
versity of Patras, Greece, in 2005 with honors. He
completed his graduate studies at the University of
Minnesota, where he received the M.Sc. degree in
Electrical Engineering in 2010, and the Ph.D. degree
in Electrical Engineering with minor in Mathematics
in 2012. He is currently an Assistant Professor
with the Department of Electrical and Computer
Engineering at the University of Texas at San An-
tonio. His research focuses on optimal and secure

operation of smart power grids and other critical infrastructures, including
water distribution networks and the Global Positioning System. Dr. Gatsis is
a recipient of the NSF CAREER award. He has co-organized symposia in the
area of smart grids in IEEE GlobalSIP 2015 and IEEE GlobalSIP 2016. He
has also served as a co-guest editor for a special issue of the IEEE Journal
on Selected Topics in Signal Processing on Critical Infrastructures.

Junjian Qi (S’12–M’13–SM’17) received the B.E.
degree in electrical engineering, from Shandong
University, Jinan, China, in 2008, and the Ph.D.
degree in electrical engineering fromTsinghua Uni-
versity, Beijing, China, in 2013. He was a Visiting
Scholar with Iowa State University, Ames, IA, USA,
in 2012, a Research Associate with the Department
of EECS, University of Tennessee, Knoxville, TN,
USA, from 2013 to 2015, and a Post-Doctoral Ap-
pointee with the Energy Systems Division, Argonne
National Laboratory, Argonne, IL, USA, from 2015

to 2017. He is currently an Assistant Professor with the Department of
Electrical and Computer Engineering, University of Central Florida, Orlando,
FL, USA. Dr. Qi is the Secretary of the IEEE Working Group on Energy
Internet and IEEE Task Force on Voltage Control for Smart Grids. He is an
Associate Editor of IEEE Access. His research interests include cascading
blackouts, power system dynamics, state estimation, synchrophasors, voltage
control, and cybersecurity.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, the following lemma is used.

Lemma 1 (From [25]). Consider a quadratic Lyapunov func-
tion V (x(t)) := x>(t)Px(t). Suppose there exists P � O,
and scalars {µ0, µ1, µ2} > 0 such that for all x(t) and w(t)
we have

V̇ (x(t)) < 0 when x>(t)Px(t) > µ0‖w(t)‖22, and

‖z(t)‖22 ≤ µ1x
>(t)Px(t) + µ2‖w(t)‖22.

Then the closed loop system with unknown inputs (12) is L∞-
stable with performance level µ =

√
µ0µ1 + µ2.

Proof of Theorem 1: Consider a quadratic Lyapunov
function V (x(t)) := x>(t)Px(t) where P � O. We consider
classical conditions on the existence of this Lyapunov function
from invoking the S-procedure in Lemma 1

V̇ (x(t)) ≤ −α(x>(t)Px(t)− µ0‖w(t)‖22),

for positive scalars α and µ0. Substituting the time-derivative
of V (x) yields

ẋ>(t)Px(t) + x>(t)P ẋ(t) (22)
+αx>(t)Px(t)− αµ0w

>(t)w(t) ≤ 0.

Substituting ẋ(t) = (A+BuK)x(t)+Bww(t) in (22) yields[
x(t)
w(t)

]>  (A> +K>B>u )P
+P (A+BuK) + αP PBw

B>wP −αµ0I

[x(t)
w(t)

]
≤ 0

which is equivalent to[
(A> +K>B>u )P + P (A+BuK) + αP PBw

B>wP −αµ0I

]
� 0.

Applying congruence transformation with S = P−1 � 0
yields[
S O
O I

] (A> +K>B>u )P
+P (A+BuK) + αP PBw

B>wP −αµ0I

[S O
O I

]
� 0,

which can be written as[
SA> +AS +Z>B>u +BuZ + αS Bw

B>w −αµ0I

]
� 0, (23)

where Z and S are the matrix variables andK = ZS−1 is the
feedback gain matrix. This verifies the first matrix inequality
in (14). From the second condition in Lemma 1, it is required
that

‖z(t)‖22 ≤ µ1V (x(t)) + µ2‖w(t)‖22. (24)

for positive scalars µ1 and µ2. Given the definition of the
performance index z(t) and the candidate Lyapunov function,
we obtain

‖Cx(t) +Du(t)‖22 ≤ µ1x
>(t)Px(t) + µ2‖w(t)‖22.
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Substituting u(t) = Kx(t) in the previous equation, we
obtain

x>(t)
(

(C +DK)
>

(C +DK)− µ1P
)
x(t)

−µ2w
>(t)w(t) ≤ 0

which can be written as[
x(t)
w(t)

]> (C +DK)
>

(C +DK)
−µ1P O
O −µ2I

[x(t)
w(t)

]
≤ 0.

Equivalently, we obtain −µ1P O (C +DK)>

O −µ2I O
C +DK O −I

 � 0.

Applying congruence transformation with S = P−1 � 0
yieldsS O O

O I O
O O I

 ·
 −µ1P O (C +DK)>

O −µ2I O
C +DK O −I


·

S O O
O I O
O O I

 � 0.

Noticing that K = ZS−1, we finally retrieve −µ1S O SC> +Z>D>

O −µ2I O
CS +DZ O −I

 � 0. (25)

This verifies the second matrix inequality in (14) and that the
performance level is indeed µ =

√
µ0µ1 + µ2; see Lemma 1.

The third and fourth matrix inequalities in (14) guarantee
Design Requirement 1. Lemma 1 is established based on the
existence of an invariant ellipsoid as discussed in [25]. This
invariant ellipsoid is described as

E = {x(t) ∈ Rn|x(t)>Px(t) ≤ µ0‖w‖2L∞}. (26)

Since E is invariant, then x0 ∈ E guarantees x(t) ∈ E for
all t ≥ t0. Suppose that the infinity norm of the disturbance
signal is known, that is ρ = ‖w‖L∞ . This reflects the worst-
case disturbance to the power network. Then, x0 ∈ E implies

x0 ∈ E ⇔ x>0 Px0 ≤ µ0ρ
2 ⇔ −µ0ρ

2 + x>0 Px0 ≤ 0.

Applying Schur complement to the above equation and then
substituting S = P−1 � 0 establishes the third matrix
inequality in (14) given by[

−µ0ρ
2 x>0

x0 −S

]
� 0. (27)

To prove the fourth matrix inequality in (14), substitute u(t) =
Kx(t) with K = ZS−1. This yields

||u(t)||22 ≤ max
t≥t0
||u(t)||22 = max

t≥t0
||ZS−1x(t)||22

⇒ max
t≥t0
||ZS−1x(t)||22 = ||ZS− 1

2 ||22 max
t≥t0
||S− 1

2x(t)||22.(28)

Assuming that (27) is satisfied, then the following holds

||S− 1
2x(t)||22 = x(t)>S−1x(t) ≤ µ0ρ

2

for all t ≥ t0, which consequently implies

||S− 1
2x(t)||22 ≤ max

t≥t0
||S− 1

2x(t)||22 ≤ µ0ρ
2.

Based on this result, (28) can be written as

max
t≥t0
||ZS−1x(t)||22 ≤ ||ZS−

1
2 ||22 µ0ρ

2

≤ λmax(S−
1
2Z>ZS−

1
2 )µ0ρ

2. (29)

If we upper bound the RHS of (29) with u2max, then

λmax(S−
1
2Z>ZS−

1
2 )µ0ρ

2 ≤ u2max = λmax(u2maxI) (30)

such that ||u(t)||22 ≤ u2max which guarantees the in-
put bound constraint. Notice that (30) implies −u

2
max

ρ2 I +

µ0S
− 1

2Z>ZS−
1
2 � 0, then applying the Schur complement

and congruence transformation yields[
−u

2
max

ρ2 I S−
1
2Z>

ZS−
1
2 − 1

µ0
I

]
� 0

⇒
[
S

1
2 O
O µ0I

][
−u

2
max

ρ2 I S−
1
2Z>

ZS−
1
2 − 1

µ0
I

] [
S

1
2 O
O µ0I

]
� 0

⇒

[
−u

2
max

ρ2 S µ0Z
>

µ0Z −µ0I

]
� 0. (31)

This completes the proof.
APPENDIX B

AGC IMPLEMENTATION

The AGC requires the addition of an extra state to the
system, as follows [36]:

ẏ = KG

(
−y −ACE +

∑
i∈G

(pgi − p0gi)

)
(32a)

ri = r0i +Kiy, i ∈ G (32b)

where KG is an integrator gain set to 1000, Ki = pgi/
∑
pgi

is the participation factor of each generator. Notice that the
sum of participation factors equals to 1, that is,

∑
i∈G Ki = 1.

Similar to [37], by treating the power network as a single
control area, we select the following ACE.

ACE =
1

G

∑
i∈G

(
1

R i
+Di)(ωi − ωs). (33)

The control input to the exciter is computed according to the
centralized L∞ gain so that voltage control is not neglected.

APPENDIX C
PROOF OF THEOREM 2

Due to space limitation, the proof of Theorem 2 alongside
the closed form representation of Ct(·) are all included in the
arXiv preprint of this work https://arxiv.org/abs/1802.09071.

APPENDIX D
PROOF OF THEOREM 3

Due to space limitation, the proof of Theorem 3 and closed-
form expressions for the matrices in (18) are all included in the
arXiv preprint of this work https://arxiv.org/abs/1802.09071.

https://arxiv.org/abs/1802.09071
https://arxiv.org/abs/1802.09071
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